

OFFICE OF THE PRINCIPAL RAMKRISHNA NAGAR COLLEGE

RAMKRISHNA NAGAR: KARIMGANJ: ASSAM:Pin:788166

Affiliated to Assam University, Silchar Registered under 2(f) & 12B of UGC Act.1956.

Date: 06.01.2025

Email:rknagarcollege9@gmail.com Website:www.rknagarcollege.org

Memo. No. RUSA/EQIP/N.A.-GEM/25/1

NOTICE INVITING QUOTATION

Sealed quotations are hereby invited from the prospective and reputed Firms/ Suppliers/ Dealers for the supply of Physics Equipment's for Physics Laboratory at Ram Krishna Nagar College, Karimganj.

Quotation on letter head will be received by the undersigned up to 2:00 P.M. on 08-01-2025 and the same will be opened at 2:30 P.M. on the same day in the Principal's Chamber in presence of the intending bidder. Details of the NIQ is attached along.

Terms & Conditions:

- a) The quoted rates should be inclusive of all taxes & charges.
- b) GST will be deducted from the bill as per the norms.
- c) All available discounts & offers are to be mentioned.
- d) The bidder may also include other terms & conditions subject to acceptance by the College Authority.
- e) The College Authority reserve the right to accept or reject any or all quotations without showing ant reasons thereof & also not liable to accept the lowest quotation in the interest of the College.
- f) Decision of the college Authority is final and binding.
- g) Payment will be regulated subject to the RUSA fund.

Copy to:

- College Notice Board.
- Respective Office file.
- College Website.

TECHNICAL SPECIFICATION

Sr. No	Name & Specification
	Newton Ring Experiment kit
	Experiments:
	To determine the wavelength of sodium light.
	To determine the refractive index of a liquid by using Newton's rings apparatus.
	To find the radius of curvature of planoconvex lens using spherometer.
	To find the thickness of a thin sheet of paper (air wedge experiment).
	Technical details :-
	Linear motion: $10-0-10$ mm
	Micrometer: Vernier dial 100 div., LC 0.01mm
	Eyepiece : Ramsden 10X
	Objective : 3X
	Spherometer disk(brass): Types 3 legs, Vertical scale 6 x 6mm(WxT) Micrometer
	dia. 40mm, Brass lower disc dia. 60mm, Range 10-0-10mm, Least count 0.01mm
	Plano convex lens: Dia. 61.5mm, Glass, Focal length 200mm
	Sodium source: MS housing, 200 x 85mm (LxØ), slit(LxW) 20x16mm
	Sodium bulb: 35W
	Fuse: 2A
	Body: Al casting
1	Weight: 12.6 kg approx
	Key topic covered :-
	Phase relationship
	Coherent light
	Path difference
	Interference.
	Newton's rings.
	Refractive index.
	Thickness of sheet wavelength.
	Radius of curvature.
	Silent features :-
	Stand alone setup (built in sodium bulb, microscope, HID blast transformer & optics
	in a single compact body.
	Reflector mounted at 45°(no special adjustment required).
	High quality glass plates (flatness $\lambda/10$).
	Heavy rigid body weight 12.6 Kg approx.
	Smooth X & Y movement of reflector assembly.
	Modern compact design required less space in Laboratory.
	Modern user friendly design.
	CURRENT AND VOLTAGE SOURCES
2	Experiments:
	Exp-1 V-I characteristics of a solar cell.
	Exp-2 I-R characteristics of a solar cell as a function of the irradiance.
	Technical details:
	Table Lamp
	Wattage 60W, Input 230V
	Solar Cell

Plug-in Modules: 2/4 pin modules, 4mm plug-in pins, transperent cover,

Symbol/Circuit printed on cover.

Plug-in Board: Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total

matrix 24nos.

Digital Multimeter: - Resistance: 200W, 2000W, 20k, 200k & 2000k W.

D.C. Voltage: 200 & 2000 mV 20V, 200V & 600 V

A.C.Voltage: 200 & 600 V

D.C.Current: 200 & 2000 micro A, 20mA & 200 mA, 10A

Testing: Diode & transistor

Battery: 9V **Key features:**_

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board

Transistors Characterstics

Experiments:

Diode characteristics of transistor junctions.

To study the characteristics of a transistor.

To study the characteristics of a field-effect transistor.

Technical details:-

Regulated Power Supply

Regulated Power Supply : Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed

Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Digital Multimeter

Resistance :200W, 2000W, 20k, 200k & 2000k W.

D.C.Voltage: 200 & 2000 mV 20V, 200V & 600 V

A.C.Voltage: 200 & 600 V

D.C.Current: 200 & 2000 micro A, 20mA & 200 mA, 10A

Testing: Diode & transistor

Battery: 9V Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

Silent features:-

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing. Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board.

Diode Circuit And Power Supply

4 To study half wave and full wave rectifier.

To study full wave (bridge) rectifier.

To study capacitor filter effect in power supply.

To study unregulated and regulated power supply.

Silent Features

1) Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board.

Teachnical details:-

Transformer

Center tapped 9-0-9V AC

Copper Winding

Digital Multimeter

Resistance :200W, 2000W, 20k, 200k & 2000k W. D.C.Voltage : 200 & 2000 mV 20V, 200V & 600 V

A.C.Voltage: 200 & 600 V

D.C.Current: 200 & 2000 micro A, 20mA & 200 mA, 10A

Testing: Diode & transistor

Battery: 9V Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

Transistors As Oscillator

Experiments:

To study Astable multivibrator using transistor.

To study Colpitt's oscillator.

To study Hartley oscillator.

To study UJTas relaxation oscillator

Key features :_

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing. Convenient & Easy to make circuit diagram using plug-in modules.

5) Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board.

Technical details:-

Regulated Power Supply

Regulated Power Supply: Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed

Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 Circuit Board 1
- 2 Capacitor Module 0.047µF
- 1 Capacitor Module 0.001 µF
- 2 Capacitor Module 0.01µF
- 2 Capacitor Module 0.1µF
- 1 Choke Module
- 2 Inductor Module 30mH
- 1 Inductor Module 60mH
- 1 Resistor Module 100Ω
- 2 Resistor Module $1k\Omega$
- 2 Resistor Module 10kΩ
- 1 Resistor Module 75kΩ
- 1 D . . . M 1 1 1001 C
- 1 Resistor Module $100k\Omega$
- 1 Resistor Module 330kΩ 1 Resistor Module 470kΩ
- 2 F
- 2 Transistor Module 2N2222
- 1 UJT Module
- 6 Flexible Lead Set (25cm)
- 2 Flexible Lead Set (50cm)
- 2 Flexible lead Set (100cm)
- 1 Variable Power Supply.

Combinatorial & Sequential Circuits:-

Experiment:

To study half adder and full adder circuit.

To study half Subtractor.

To study BCD to 7-segment decoder.

To study decade counter.

To study RS flip flop.

To study D flip flop.

To study JK flip flop.

To study shift registers.

Features :- Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board.

Regulated Power Supply

Regulated Power Supply: Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed

Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

6.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 Circuit Board
- 2 AND Gate Module
- 2 Ex-OR Gate Module
- 10 Flexible Lead Set (25cm)
- 6 Flexible Lead Set (50cm)
- 5 Flexible lead Set (100cm)
- 1* Full Adder Module
- 1* Half Adder Module
- 1* Half Substractor Module
- 1 OR Gate Module
- 1 FND+7 Segment Decoder
- 1 Decade Counter Module
- 1 RS Flip Flop
- 1 D-Flip Flop
- 1 JK Flip Flop Module
- 1 Shift Register Module
- 3 Switch Module
- 1 Push Button Module
- 1 Digital Multimeter
- 1 Signal Generator
- 1 Variable Power Supply

7) Diodes Characteristics:

Experiment: - To study the V-I characteristics of diodes.

To study the V-I characteristics of zener diodes.

To study the V-I characteristics of light-emitting diodes.

Features :-

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board.

Regulated Power Supply

Regulated Power Supply : Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed

Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transparent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 Circuit Board
- 2 Digital Multimeter
- 1 Diode Module

- 4 Flexible Lead Set (50cm)
- 2 Flexible lead Set (100cm)
- 1 Resistor Module $1k\Omega$
- 1 LED Module (red)
- 1 Resistor Module 330Ω
- 1 Zener Diode Module
- 1 Variable Power Supply
- 8) Basic Logical Operations:-

Experiment:-

AND, OR, XOR, NOT, NAND and NOR operations using single logic gate modules.

De Morgan's laws

AND, OR, XOR, NOT, NAND and NOR operations using quad logic gate modules. Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board. Regulated Power Supply

Regulated Power Supply : Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 AND Gate Module
- 1 Circuit Board
- 1 Ex-OR Gate Module
- 6 Flexible Lead Set (25cm)
- 8 Flexible Lead Set (50cm)
- 2 Flexible lead set (100cm)
- 1 NAND Gate Module
- 1 NOR Gate Module
- 1 NOT Gate Module
- 1 OR Gate Module
- 2 Switch Module
- 1 Variable Power Supply
- 1* AND Gate Module
- 1* Ex-OR Gate Module
- 1* NAND Gate Module
- 1* NOR Gate Module
- 1* NOT Gate Module
- 1* OR Gate Module

9) Opamp As Oscillator:-

To Study RC Phase Shift Oscillator Using Op-Amp.

To Study Wein Bridge Oscillator Using Op-Amp.

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board. Power Supply

Power Supply: Output voltage ±15V Fixed, Current 500mA

Overload protection Current limiting.

Input Voltage 230V AC, 50Hz

Plug-in Modules

2/4 pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 Circuit Board
- 1 Power Supply +/- 15V
- 6 Flexible Lead Set (25cm)
- 4 Flexible Lead Set (50cm)
- 3 Flexible lead Set (100cm)
- 1 OP-AMP Module
- 3 Resistor Module $3.3k\Omega$
- 3 Resistor Module $10k\Omega$
- 2 Resistor Module $15k\Omega$
- 2 Resistor Module $27k\Omega$
- 1 Resistor Module $100k\Omega$
- 1 Variable Resistor $1M\Omega$
- 3 Capacitor Module 0.01µF
- 2 Capacitor Module 0.022µF
- 3 Capacitor Module 0.1 µF

10) Special Diode Characteristics:-

Experiment:-

To study MOSFETcharacteristics.

To study characteristics of SCR.

To study characteristics of TRIAC.

Students use plug-in modules for circuit design.

Component mounted on PCB and these PCB fix in a transparent housing for the visibility of the components.

The symbol's name and the value of the components are printed on top of the transparent housing.

Convenient & Easy to make circuit diagram using plug-in modules.

Do it yourself approach provodeds better learning.

Economical & Flexible method of performing all experiments on one circuit board. Regulated Power Supply

Regulated Power Supply: Output Voltage 0 -16V, 1 Amp, 5V. 1 Amp. DC Fixed

Ripple Less than 25mV

Display 3 1/2 Digit LED for 0-16V DC

Input voltage 230V AC, 50 Hz

Digital Multimeter

Resistance :200W, 2000W, 20k, 200k & 2000k W. D.C.Voltage : 200 & 2000 mV 20V, 200V & 600 V

A.C. Voltage: 200 & 600 V

D.C.Current: 200 & 2000 micro A, 20mA & 200 mA, 10A

Testing: Diode & transistor

Battery: 9V **Plug-in Modules**

 $2\!/\,4$ pin modules, 4mm plug-in pins, transperent cover, Symbol/Circuit printed on

cover.

Plug-in Board

Plug-in board has 4mm sockets, arranged in 2 x 2 matrix. Total matrix 24nos.

- 1 Circuit Board
- 3 Digital Multimeter
- 6 Flexible Lead Set (50cm)
- 4 Flexible lead Set (100cm)
- 1 MOSFET Module
- 1 SCR Module
- 1 Traic Module
- 1 Resistor Module 1k Ω , 1W
- 1 Resistor Module 100Ω , 1W
- 2 Resistor Module 50Ω , 1W
- 2 Variable Power Supply
